MATHSCRIPTUM
  • Home
  • Mathematics
    • Random Walks on Semigroups Generated by Primes
    • The Riemann Zeta Function and Sums of Independent Random Variables with Geometric Distribution
    • Dynamical Systems
    • Probability and Statistics
    • Stochastic Processes
    • Random Fields
    • Lomonosov Moscow State University
    • Applications >
      • Math Class
      • Physics
      • Biology
      • Sociology
    • Иноходец. Урок Перельмана.
  • Number Theory
  • Poetry
    • Life and Love >
      • To My Youngest Daughter on her 18th Birthday
      • Давай договоримся... Let's negotiate...
      • To Anna
      • Мы рядышком с тобою были...
      • Весна Осенью
      • I called you three times...
      • Я подозрителен и болен…
      • Ушла жена…
    • Spiritual >
      • Баллада о Богатыре Изе
      • Я не здешний...
      • Jerusalem
      • My chariot
      • The day my rent would come to end...
      • Questions to the Almighty G-d
      • В деньгах ли счастье?
    • Science and Math >
      • Прыжок в другое измеренье
      • Божественные числа. Divine Numbers
      • Неужто мир наш автомат…
      • Thunderstorm
    • Translations >
      • A Psalm of Life
      • When I'm 64 - The Beatles
    • Literary >
      • Alliteration
      • Изящная словесность
      • Поединок поэтов в Сети
  • Blog
  • Всё о нас
  • Random Walks on Semigroups of Primes
  • Random Walks on Semigroups of Primes
  • Solving Goldbach Conjecture

my_book4e_rec.docx
File Size: 52429 kb
File Type: docx
Download File

​Abstract
Here is the list of questions and problems of Number Theory listed below I tried to address entirely from the probabilistic point of view. I am hoping that some of these questions were answered satisfactory in these notes, while others are still unanswered waiting for more detailed analysis and resolution.
  1. Additive and  sigma-additive probability measures on the set of natural nimbers
  2. Probability distributions on multiplicative semigroups of natural numbers and Riemann Zeta function.
  3. H. Cramér model and Zeta distribution of prime numbers
  4. Approximations of  the counting function of prime numbers Pi(x)
  5. An additive model of random walks on a set of all prime numbers.
  6. Probability modeling for residuals and the Chinese Reminder Theorem